🖄 INSTITUTE OF MARINE RESEARCH

The 3R's and behavioural studies in aquaculture:

Trade off between possible animal suffering and relevance

Jon-Erik Juell

Harmonization of the care and use of fish in research, Gardermoen 23-26 May 2005

Animal welfare - a focus area

Acknowledgements

• Anders Fernö, University of Bergen

- Frode Oppedal
- David Johansson
- Jan Erik Fosseidengen
- Jan Erik Stiansen
- Tore Kristiansen

• Behavioural studies and aquaculture

• Behaviour and importance of context

• Animal suffering and relevance - the 4th R?

Why study fish behaviour?

- Basic science model species
- Life history ecology
- How to catch them sustainably

- Sport and commercial fisheries

- How to manage/keep them
 - Aquariums
 - Aquaculture
 - The majority of experimental fish

Behavioural studies in aquaculture

How do the fish respond to management & environmental conditions ?

Underlying mechanisms and functions?

- Needs
- Preferences
- Aversion

How can we secure animal welfare?

Non - invasive welfare indicators

"What is the aquaculture context?"

Field studies

Kobbevik og Furuholmen A/S, Austevoll

How does light regimes influence swimming behaviour?

A highly variable light environment

Center of cade - between lights

Fish density (kg/m3)

□ 1 (ZZZZ) 3 (ZZZZZ) 5 (ZZZZZZ) 10

15

Juell and Fosseidengen (2004)

Surface lights crowd the fish

Conclusions

- Artificial light sources have a strong influence on swimming depth and fish density both night and day
- Due to large variations in light intensity within the cage volume
 - Light intensity reduced by the square of the distance from the source
 - The large number of fish adds to attenuation of light

- Salmon normally school in a high density cage environment and needs visual contact to do so
- Dark-adaptaion of the the salmon eye is a "slow" process
- Change of swimming depth is a behavioural adaptation to the reduced natural light intensity at dusk
- Change in swimming depth influence fish-density

Implications for fish welfare?

 Control fish density and swimming depth in production cages

• Reduce crowding (hypoxia, fin erosion)

 Reduce exposure time to sub-optimal waterlayers (Al-toxity, salmon lice)

The cage environment laboratory, IMR Matre

Temperature

Temperature

Schooling density 10-12. September

Stocking density: 19 kg/m³

Temperature, day 268-280

What about the indivdual fish in large groups?

Swimming depth and body temperature?

Temperature as a physiological resource

3 salmon in a group of 10000 Competition for space and coping strategies?

Temperatur (° C)

Environmental variability:

Vertical gradients

32.5

27.5

22.5

17.5

Johansson m.fl. 2004

Dag nr.

Questions

• Should all of them be counted as experimental animals?

• Do they suffer?

• How should we implement the 3 R's?

Animal suffering vs. relevance

Individual behaviour depend on others

- Social interactions
 - Aggession and dominance hierarchies?
 - Scramble competition
 - Schooling behaviour
 - Polarization
 - Group rather than individual control of behaviour
 - Behavioural adaptation to high density environments?
- Species specific
 - Atlantic mackerel Salmon- Cod Halibut

Behaviour, aquaculture and the 4R's

• Relevance?

– The aim of the study?

• Reduce ?

- Effect of group size

- Risk analysis on possible animal suffering?

• Refine?

- Number of fish subjected to invasive procedures

Replace? Individual based modelling

Vabø & Skaret (submitted)